
"1O U_ 9(kNC-j ? C -Qi' A -f THC ' i•'7 "I A NVUAL As•. LoMfw, &a. -

N o ..- 2%zot3 PACWIC , tZC NG, CA.

Parallel Detection Fusion for Multisensor Tracking of a

Maneuvering Target in Clutter using IMMPDA Filtering

Soonho Jeong and Jitendra K. Tugnait

Department of Electrical & Computer Engineering

Auburn University, Auburn, AL 36849, USA

Tel: (334)844-1846 Fax: (334) 844-1809

Email: jeongso, tugnait@eng. auburn. edu

Abstract

We present a (suboptimal) filtering algorithm for tracking a highly maneuvering target in a

cluttered environment using multiple sensors. The filtering algorithm is developed by applying

the basic Interacting Multiple Model (IMM) approach and the Probabilistic Data Association

(PDA) technique to a two sensor (radar and infrared, for instance) problem for state estimation

for the target. A detection fusion approach is followed where the raw sensor measurements are

passed to a fusion node and fed directly to the target tracker. A multisensor probabilistic data

association filter is developed for parallel sensor processing for target tracking under clutter. A

past approach using parallel sensor processing has ignored certain data association probabilities

leading to an erroneous derivation. Another existing approach applies only to non-maneuvering

targets. The algorithm is illustrated via a highly maneuvering target tracking simulation ex-

ample where two sensors, a radar and an infrared sensor, are used. Compared with an existing

IMMPDA filtering algorithm with sequential sensor processing, the proposed algorithm achieves

significant improvement in the accuracy of track estimation.
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1 Introduction

We consider the problem of tracking a single maneuvering target in clutter. This class of problem

has received considerable attention in the literature [1, 6, 7, 8, 9, 12]. The switching multiple model

approach has been found to be quite effective in modeling highly maneuvering targets [1, 2, 3, 4,

5, 6, 9]. In this approach various "modes" of target motion are represented by distinct kinematic

models, and in a Bayesian framework, the target maneuvers are modeled by switching among these

models controlled by a Markov chain. In the presence of clutter, the measurements at the sensors

may not all have originated from the target-of-interest. In this case one has to solve the problem

of data association. An effective approach in a Bayesian framework is that of probabilistic data

association (PDA) [2, 12].

To accommodate the fact that the target can be highly maneuvering, we will follow a switching

multiple model formulation as in [1, 2, 3, 4, 5, 6] and references therein. It is assumed that a

track has been formed (initiated) and our objective is that of track maintenance. In [1] such a

problem has been considered using multiple sensors, PDA, and switching multiple models. The

optimal solution (in the minimum mean-square error sense) to target state estimation given sensor

measurements and absence of clutter, requires exponentially increasing (with time) computational

complexity; therefore, one has to resort to suboptimal approximations. For the switching multiple

model approach, the interacting multiple model (IMM) algorithm of [4] has been found to offer a

good compromise between the computational and storage requirements and estimation accuracy

[3]. In the presence of clutter, one has to account for measurements of uncertain origin (target

or clutter?). Here too, in a Bayesian framework, one has to resort to approximations to reduce

the computational complexity, resulting in the PDA filter [1, 6, 8, 9, 12]. In [1] the IMM algo-

rithm has been combined with the PDA filter in a multiple sensor scenario to propose a combined

IMM/MSPDAF (interacting multiple model/ multisensor probabilistic data association filter) al-

gorithm. The multisensor approach of [1] falls in the category of detection fusion where the raw

measurements from all sensors are passed to a fusion node to be processed simultaneously [9]. Ref

[1] uses sequential updating of the state estimates with measurements (i.e. updating the state

estimates sequentially with measurements from different sensors). This results in computational

savings but this approach is not necessarily the best. The other option is that of parallel updating

(i.e. updating the state estimates with all the measurements at the same time as if they were from

a single sensor). For linear systems, the two updating methods are algebraically equivalent but

the parallel updating is computationally more expensive [6]. Ref [9] uses parallel updating but has

some errors: during data association, all measurements at the same time from different sensors are

assumed to be either from clutter of from the target. The possibility that a measurement from

sensor 1 may be from target while the measurement from sensor 2 may be clutter-induced (and
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vice-versa) in implicitly not allowed in [9] - this is clearly incorrect. Ref [13] allows for such dis-

tinctions (hypotheses), however, it is limited to non-maneuvering targets. In this paper, we extend

the multisensor approach of [13] to maneuvering targets.

The paper is organized as follows. Section 2 presents the problem formulation. Section 3

describes the proposed IMM/MSPDAF algorithm with parallel detection fusion. Simulation results

using the proposed algorithm for a realistic problem are given in Section 4. Finally, Section 5

presents a discussion of the results and some conclusions.

2 Problem Formulation

Assume that the target dynamics can be modeled by one of n hypothesis models. The model set

is denoted as M {n := 11, ..., n} and there are total q sensors from which q, or fewer (if probability

of target detection is less than one) or more (due to clutter), measurement vectors are generated

at a time. The event that model j is in effect during the sampling period (tk-1, tk] is denoted by

Mk7. For the j-th hypothesized model (mode), the state dynamics and measurements, respectively,

modeled as

Xk = FP3IXk_1 + Gk_jVk_ 1  (1)

and

Z = h(Xk)+ for =1,...,q (2)

where Xk is the system state at tk and of dimension nx, zl4 is the (true) measurement vector (i.e., due

to the target) from sensor I at tk and of dimension nzj, FJk'l and GkjI are the system matrices when

model j is in effect over the sampling period (tk-1, tk], and hj,L is the nonlinear transformation of

Xk to z (I = 1, ... , q) for model j. Henceforth, time tk will be denoted by k. A first-order linearized

version of (2) is given by

I I I WjkJ for l-=--1,...,q (3)

where Hk'IL is the Jacobian matrix of hj,l evaluated at some value of the estimate of state Xk. The

process noise vi- and the measurement noise UWk'I are mutually uncorrelated zero-mean white

Gaussian processes with covariance matrices Q- 1 and Rk', respectively. At the initial time to,

the initial conditions for the system state under each model j are assumed to be Gaussian random

variables with the known mean _ and the known covariance P0
7. The probability of model j at

to, M -= P{M3o}, is also assumed to be known. The switching from model M _1 to model Mi

is governed by a finite-state stationary Markov chain with known transition probabilities Pj =

P{ Mjk[Mk -1 }.
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The following notations and definitions are used regarding the measurements at sensor 1. Note

that, in general, at any time k, some measurements may be due to clutter and some due to the

target, i.e. there can be more than a single measurement at time k at sensor 1. The measurement

set (not yet validated) generated by sensor I at time k is denoted as

7 := 0(), z (2),.. ( I 4
""', k } (4)

where ml is the number of measurements generated by sensor 1 at time k. Variable z• (i) =

1,...,mi) is the ith measurement within the set. The validated set of measurements of sensor 1 at

time k will be denoted by Y,/, containing fhi (_5 ml) measurement vectors. The cumulative set of

validated measurements from sensor 1 up to time k is denoted as

Zk(I) := {Yl l lY..Y}. 5

The cumulative set of validated measurements from all sensors up to time k is denoted as

Zk := {Zk(), Zk(2 ), ... , Zk(q)} (6)

where q is the number of sensors.

Our goal is to find the state estimate

4klk E{xkIZk} (7)

and the associated error covariance matrix

eklk := E[xk- &klkl[Xk - •klk]'lIZ} (8)

where x' denotes the transpose of Xk.

3 IMM/MSPDAF Algorithm for Parallel Detection Fusion

We now modify the IMM/PDA algorithms of [1] and [11] to derive the proposed IMM/MSPDAF

with parallel detection fusion system. We confine our attention to the case of 2 sensors; however,

the algorithm can be easily adapted to the case of arbitrary q sensors. We will only briefly outline

the basic steps in "one cycle" (i.e., processing needed to update for a new set of measurements) of

the IMM/MSPDA filter.

Assumed available: Given the state estimate k-Ilk-i E{xkjlM kl,zk-}, the associated

covariance Pk- 1 1k- 1, and the conditional mode probability 4-1 := P[M~k-lZk-1] at time k- 1 for

each mode j E M,,.
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Step 1., Interaction - mixing of the estimate from the previous time (Vj E Mn)

predicted mode probability:

k p[MklZk-1 = pijpik-1. (9)
i

mixing probability:
/ilj := p[Mki_JjMj, Zk-1]= ,j j J-

[ Z] Pil4kl/1. (10)

mixed estimate:

Xk-1k-1 := E{Xk-llM'k-, } 2E ik-1IkP1' 3 " (11)
i

covariance of the mixed estimate:

Doi •o /[zk-11

Pk-lik-1 := E{[Xk-1 - Xk ilk 11[Xk-1 - -Ok llkll]IlMk, JZ

-- -lik- + [k4 -lk-1 - Xk-1lk-iJ[k-iIlk-1 - lik.jk-i]},1 (
i

Step 2. Predicted state and measurements for sensors 1 and 2 (Vj E Mj)

state prediction:

I .k_. E{xkIMjk, Zk-k} Fk kok (13)

state prediction error covariance:

Pkjk-i := E- 'kjk4] I Mi, Zk-l}

= F l o0 k F G j QJ G . (14)Sk -1• k-llk- 1•kj- 1 +[ 'k-lQ•k- 1 k-l " 14

The mode-conditioned predicted measurement for sensor 1 is

Pk hj,"(jkl)" (15)

Using the linearized version (3), the covariance of the mode-conditioned residual

k1(i) :Z k(i) Vk,t,

is given by (assume q=2, the case of 2 sensors)

Skj'l E'l(i)Vk3"1(i)'1MkJ Zk-lI E'J'J LIkI-1j'l' +- RV'1 (16)

* {2 ,2(i)V M Zk-11: Hkj2 P j,21 + (17)

S -- E- tkk 3k,(ki' I Mk I klk-lk k

where Hk't is the first order derivative (Jacobian matrix) of h,' (.) evaluated at the state prediction

1lk-1 (see (15)). Note that (16) and (17) assume that zjk"' originates from the target. The results

(16) and (17) do not depend upon the actual measurements.
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As mentioned earlier, since our approach to the problem deals with multiple simultaneous

measurements [13, 14] arising from two separate sensors that are tracking a single target through

a common surveillance region, a method for fusion of multiple measurements has to be devised. In

order to do this, now the combined covariance Sk of the mode-conditioned residual obtained from

(16) and (17) also needs to be considered as follows:

" "k 1 X _j,2 0 (18)Sk kj2 kl-+ 0 Rk' 2

Step 3. Measurement validation for sensors 1 and 2 (Vj E Mn):

There is uncertainty regarding the measurements' origins. Therefore, we perform validation for

each target separately. One sets up a validation gate for sensor 1 centered at the mode-conditioned

predicted measurement, it. Let (IAI = det(A))

ja := arg {max S"}

Then measurement z() (i-1,2,...,mi) is validated if and only if

[2(i) _ aII"Y[S3a4 ] 1 14(i) < Pk (19)

where -y is an appropriate threshold. The volume of the validation region with the threshold -y is

V/I :=-.1 li 2  (20)

where nzi is the dimension of the measurement and cn,,, is the volume of the unit hypersphere of

this dimension (c, = 2, c2 = 7r, C3 = 47r/3, etc.). Choice of,-y is discussed in more detail in ([6], Sec.

2.3.2). After performing the validation for each target separately, we deal with all the validated

data for the measurement fusion.

Step 4. State estimation with validated measurement from sensors 1 and 2 (Vj E

Mj)

From among all the raw measurements from sensor 1 at time k, i.e. Z1 -= l)k I(-k ,"', }k
define the set of validated measurement for sensor I at time k as

{y(1) 1(2) y (YT7 )} (21)Yk• : lYk I Yk ,",Yk

where f-n is total number of validated measurement for sensor 1 at time k and

k(i) :=Z k() (22)

where 1< 11 < 12 <... <,7, !< ml when fhj 00. Define the association events (hypotheses) 0 ',b as

follows (here we follow [?])
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0,0. none of the measurements in Yk' or Y2 is target originated.
0O,b 2(b) 2
, only Yk in Yk is a target measurement, all other measurements in Y' or are clutter

a = 0, b = 1, ... , ma 2 .
ha'° ony1(a) 1

onl ": k in y1 is a target measurement, all other measurements in Y1 or Y axe clutter
a --- 1,..,r l, b -- 0.

a,b 1 (a) a 2(b) 1
I"k and Yk in Yk and y2, respectively, are target measurements, all other measure-

ments axe clutter, a = 1, ...,7 1 , b- 1, 2

Therefore, there are a total of fhjf2+f•i+f2+1 possible association hypotheses, each of which

has an association probability. Define the mode-conditioned association event probabilities as

,a,b :=p{obIM , k•j , zk1}. (23)

Exploiting the diffuse model for clutter in [1, 6], it turns out that

,ok",0 =C (1-PDPG)(1-PD2 PG2 )
k =v ~(Vki),nlC(Vý1),n2 ,a 0 =

fij, O,b = 2 (1-PD1 •PG,)N f1 ,,;0,2b)k = C (V 2 )Y2_- 1 f, a=O, b=1, ...,m 2

)N 'l.);OlSj'I(24)
aO= PD1 (1-PD2 P0 2 )N[V~a)Ok (24

kj C (Vy),2_n 2  , a=l,...,fl, b=O

N r~,1(a);o S I,N[i2(b) OSj,2]Nj,a,b c Lk;,k0 N ;0k PD1PD2-kab = 2 (V),kIl(V)_l , k = 1,I,...,7fl, =,...,77n2

where PD, and PD2 are the detection probabilities that the sensors 1 and 2 detect the target,

respectively, PG, and PG, are probabilities the target is in the validation region observed from

sensors 1 and 2, respectively, C is a normalization constant such that l E-f,2 = k3 ,ab = 1 Vj and

N[x;y,P] :[27rp[-1/2 exp- (X - y),P-1 (X -)0.



Define the mode-conditioned innovations vj,' as

-= Tzx a=O,b=O

[,O,b [Ozlx1

3 .Ll = V k * 2(b) J a = O, b= 1, ... , I f 2

S ,1(a) (25)
-VM'i'°O a = 1, ...,Ifn, b = 0

0
flz2x1

[ ~k'l(a)1
"'a= a k 2(b) j 1,...,Ifni, b- =1,...,m2 .

The likelihood function for each mode m is
r 1 ~ ~ L i 1 ni rfn22

A3 :=p kyly2IM, - p [yl, ,kkbIk Zk-l (26)

a=O b=O

where
P [yi, yk2, a,bjMkj' Zk-1" = p [ykl, ,-2j, •,j a,b, Zk-1] pt,b]

k k k k ', "k k-" p[

(1-PDjPGj)(1-PD2 PG2) a=O, b=0
[V]l[v2]rl ,[b

(I-PDIPGI)(PD2 PG2 )/rn2 [3j,2(b). 0, S 3,2]
PG2I [kl2i N1k I k, a = 0, b =1,...-, n2

Px[2 [o s ,]b o(27)

(pDlpGl i-PD2 PG2 /fnll [x N a)= fni, b = 0
PG[V•-' I , a l.,

(PDiPGj)(PD2 PG2 )1(rI-fijM2) x N[l/j'a~b;S] 1 b=1,.,1.Pclrv'lr~-l [Vj2 [v ]m2-1- 0, ,k a = 1, ... 7 fh i, b = 1, ... , Ih

PG, [V.11]1P. 2 k j]fi2

Using VIk-1 (from (13)) and its covariance Pkjkl_1 (from (14)), one computes the partial update

klk klkand its covariance according to the standard PDAF [1], except that the augmented state is

conditioned on 0 kb with data fusion from sensors 1 and 2. Define the combined mode-conditioned

innovations 4:= fnln a• • '°' a,b'' (28)
a=O b=O
a+bi4O

Therefore, partial update of the state estimate

j,a,b, := E XkIf ,jak Mj Zk-1 y 2,1} = Pjk-1 + WMJ a,b a,b (29)
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lJja,bwhere Kalman gains, Wkja , are computed as

W•'°'°=0 0, for a=0, b=O

Wk'a'° k rJ1 [H"'[S'r'l - I 0], for aA0, b=0

O,b j fTk,2' r ]1,21 
(30)

=P 3 -[0 ",'k LkJJ, for a=0, bV0

jab k -J flk- ktj'kS ', for a 9 0, b : 0,

wher e H3
- [Hi."' HkJ"21. Therefore, the mode-conditioned update of the state estimate

Mnl n2
41k:= ~xkM~Zk-1,Y y'} -i Z fl~~ j,a,b.

& _-k 
l E (3 1 )

a=O b=0
a+b#O

and the covariance of VIk

p. pJ rnl• n2• •jk'ab EJEa'bSJ'a'bI 3,'a'b' kab J' a,b * a,b ' ,abl'bVJa,bpkl P lk-1 -ZZ k k j
- Pk = a=o b=O a=o b=0

a+b$0 a+bA0

[n n ~ ~~ts n 2#,~ ~ (32)
)5qi Wk kL Wk ja2Ea=Ob=o a=Ob=o

a+b#O L a+b$O

Step 5. Update of mode probabilities (Vm E Mn):

.kP:=P[M3kIZk] l (33)

where C is a normalization constant such that 4k= 1.

Step 6. Combination of the mode-conditioned estimates (Vm E Mn)

The final augmented state estimate update at time k is given by

41kk = Z, k4 kPk (34)

and its covariance is given by

Pk~k = Z. {Pkj~k + [:'lk -41k] [&kik - &klk]}I4 (35)

4 Simulation Example

The following example of tracking a highly maneuvering target in clutter is considered.

The True Trajectory: The target starts at location [21689 10840 40] in Cartesian coordinates

in meters. The initial velocity (in m/s) is [-8.3 -399.9 0] and the target stays at constant altitude

with a constant speed of 400 m/s. Its trajectory is:
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"* a straight line with constant velocity between 0 and 20s,

"* a coordinated turn (0.15 rad/s) with constant acceleration of 60 mr/s2 between 20 and 35s,

"* a straight line with constant velocity between 35 and 55s,

"* a coordinated turn (0.1 rad/s) with constant acceleration of 40 mr/s2 between 55 and 70s,

"* a straight line with constant velocity between 70 and 90s.

The Target Motion Models: These are exactly as in [11]. In each mode the target dynamics

are modelled in Cartesian coordinates as xk = Fxk-l + Gvl where the state of the target is

position, velocity, acceleration, and process noise in each of the 3 Cartesian coordinates (x, y, and

z). Model 1 for Nearly constant velocity model with zero mean perturbation in acceleration; Model

2 for Wiener process acceleration (nearly constant acceleration motion); Model 3 for Wiener process

acceleration (model with large acceleration increments, for the onset and termination of maneuvers).

The details regarding these models may be found in [11]. The initial model probabilities are

S0.8, p02 
- 0.1 and # = 0.1. The mode switching probability matrix for two targets is also

identical and is as in [1] Fig. 1 shows the true trajectory of the target.

The Sensors: Two sensors (we assume time synchronization of observations, etc., but not

collocation) are used to obtain the measurements. The measurements from sensor 1 for model j are

z4 = h,"(x,) + uw," for I = 1 and 2, reflecting range and azimuth angle for sensor 1 (radar) and az-

imuth and elevation angles for sensor 2 (infrared). The range, azimuth, and elevation angle transfor-

mations would be given by rl = {(X- x) 2 + (y _ y1) 2 + (z - zI)2}1/2, al = tan-[(y - Yi)/(x - x0)],

el = tan-1 [(z - zt)/(x- _X) 2 + (y y) 2}l/2 ], respectively, if the sensor 1 were located at [xi y,

z1]. In our simulations, we placed the radar at [-4000 4000 0]m and the infrared sensor at [5000

0 0]m. The measurement noise w•,t for sensor 1 is assumed to be zero-mean white Gaussian with

known covariances, R1 = diag[qr, qal] = diag[400m 2,49mrad 2] with q, and qal denoting the vari-

ances for the radar range and azimuth measurement noises, respectively, and R2 = diag[qa2, qe] =

diag[4mrad2, 4mrad2] with qa2 and q, denoting the variances for the infrared sensor azimuth and

elevation measurement noises, respectively. The sampling interval was T=ls and it was assumed

that the probability of detection Pd=0.99 7 for both sensors.

The Clutter: For generating false measurements in simulations, the clutter was assumed

to be Poisson distributed with expected number of A1 = 50 x 10- 6/M mrad for sensor 1 and

A2 = 3.5 x 10- 4/M 2 mrad for sensor 2. These statistics were used for generating the clutter in all

simulations. However, a nonparametric clutter model was used for implementing all the algorithms

for target tracking.

Other Parameters: The gates for setting up the validation regions for both the sensors were

based on the threshold 7=16 corresponding to a gate probability PG=0.9997.
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Figure 1: True trajectory of maneuvering target (read left to right, top to bottom): (a) Position in

xy plane; (b) x and y velocities; (c) x and y accelerations; (d) magnitude of acceleration.

Simulation Results: The results were obtained from 100 Monte Carlo runs. Fig. 2 shows

the results of proposed IMM/MSPDAF based on 100 runs comparing with the standard sequential

IMM/MSPDAF in terms of the RMSE (root mean-square error) in position. It is seen that parallel

updating can significantly improve the accuracy of track estimation. In addition, it is also seen

that tracking with separated sensors can improve the accuracy of track estimation compared to

using collocated sensors.

5 Conclusions

We investigated an IMM/MSPDAF algorithm with parallel detection fusion for tracking a highly

maneuvering target in clutter. The proposed algorithm was illustrated via a simulation example

where it outperformed the IMM/MSPDAF algorithm with sequential updating [1].
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Figure 2: Performance comparison between the proposed parallel detection fusion IMM/MSPDAF

and sequential updating IMM/MSPDAF of [1] (read left to right, top to bottom): (a) sequential

updating [1] with collocated sensors, (b) sequential updating [1] with separated sensors, (c) pro-

posed parallel detection fusion with collocated sensors, (d) proposed parallel detection fusion with

separated sensors.
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